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Abstract High fat diets are extensively associated with
health complications within the spectrum of the metabolic
syndrome. Some of the most prevalent of these pathologies,
often observed early in the development of high-fat dietary
complications, are non-alcoholic fatty liver diseases. Mito-
chondrial bioenergetics and redox state changes are also
widely associated with alterations within the metabolic
syndrome. We investigated the mitochondrial effects of a
high fat diet leading to non-alcoholic fatty liver disease in
mice. We found that the diet does not substantially alter
respiratory rates, ADP/O ratios or membrane potentials of
isolated liver mitochondria. However, H2O2 release using
different substrates and ATP-sensitive K+ transport activi-
ties are increased in mitochondria from animals on high fat
diets. The increase in H2O2 release rates was observed with
different respiratory substrates and was not altered by
modulators of mitochondrial ATP-sensitive K+ channels,
indicating it was not related to an observed increase in K+

transport. Altogether, we demonstrate that mitochondria
from animals with diet-induced steatosis do not present
significant bioenergetic changes, but display altered ion
transport and increased oxidant generation. This is the first
evidence, to our knowledge, that ATP-sensitive K+ trans-
port in mitochondria can be modulated by diet.

Keywords Steatosis . Respiration .Mitochondrial
bioenergetics .Mitochondrial ATP-sensitive potassium
channels (mitoKATP) . Reactive oxygen species (ROS)

Abbreviations
ATP Adenosine triphosphate
DZX Diazoxide
5-HD 5-hydroxydecanoate
MS Metabolic syndrome
mitoKATP Mitochondrial ATP-sensitive potassium channels
MPT Mitochondrial permeability transition
NAFLD Non-alcoholic fatty liver diseases
ROS Non-alcoholic steatohepatitis (NASH), reactive

oxygen species

Introduction

Obesity is an increasing health concern, particularly in
developed countries (Begriche et al. 2006; Nicolson 2007;
Nisoli et al. 2007) in which energy expenditure is low and
diets are rich in fats and simple sugars (Bray et al. 2004;
Jew et al. 2009). The obese phenotype is related to
pathological states, which include insulin resistance, type
II diabetes, dyslipidemia, pro-inflammatory and pro-
thrombotic states, hypertension and non-alcoholic fatty
liver diseases (NAFLD). The concerted manifestation of
these pathologies is termed metabolic syndrome (MS),
although the criteria for this diagnosis is still debated
(Federspil et al. 2006).

One of the most prevalent pathologies observed in
obesity and the MS is NAFLD, which affects up to 70%
of obese and diabetic individuals. NAFLD is a wide term
that includes steatosis, characterized by lipids vacuoles in
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the cytosol leading to hepatocyte ballooning; non-alcoholic
steatohepatitis (NASH), characterized by necroinflamma-
tion and fibrosis, and cirrhosis in the absence of alcohol
abuse (Fromenty et al. 2004; Begriche et al. 2006).
Steatosis in isolation is not associated with overt limitations
in liver functions, but it can progress into NASH, which can
evolve into cirrhosis and hepatocellular carcinoma
(Begriche et al. 2006; Pessayre 2007; Hashimoto et al.
2009).

A well-established animal model of steatosis is induced
by diet in mice (Anstee and Goldin 2006). Using a mouse
model, Day and James (1998) proposed the two hit theory
for NASH development: the first hit, steatosis, sensitizes
the liver to the induction of inflammation by a second
pathogenic insult that promotes oxidative stress and, hence,
steatohepatitis. Steatosis is promoted by the accumulation
of long chain fatty acids (LCFA), while NASH is caused by
oxidative stress, inflammation and/or infection (Day and
James 1998). Despite this mechanistic suggestion, specific
molecular pathways involved in this pathology are not yet
clearly understood.

Mitochondria, as the central coordinators of energy
metabolism, have been extensively shown to be involved
in the metabolic syndrome (Begriche et al. 2006; Nicolson
2007). In humans, mitochondria in NASH present morpho-
logical alterations with paracrystalline inclusion bodies and
are frequently swollen. Alterations in lipid oxidation are
observed as well (Sanyal et al. 2001; Le et al. 2004).
Ultrastructural modifications in liver mitochondria were
observed in high-fat fed rats. They presented enlarged
organelles, forming megamitochondria (Altunkaynak and
Ozbek 2009). However, few studies have explored mito-
chondrial function under conditions of steatosis and NASH.
Considering the central role of these organelles in lipid
metabolism, we decided to study basic mitochondrial
bioenergetic functions under conditions of early and
prolonged NAFLD in mice.

Furthermore, mitochondria are the most quantitatively
relevant source of reactive oxygen species (ROS) produc-
tion in most cells (Boveris and Chance 1973; Kowaltowski
et al. 2009). Liver mitochondrial ROS generation in rats has
specific characteristics. Relative to other tissues, liver
produces more hydrogen peroxide in state 3, and there is
an elevated basal production of ROS, mainly from lipid-
derived substrates (Tahara et al. 2009). Changes in redox
state promoted by alterations in mitochondrial ROS
production can alter the activity of JNK enzymes and
disturb insulin signaling, leading to insulin resistance
(Nishikawa et al. 2007). As a result, we also investigated
the redox results of NAFLD by measuring mitochondrial
oxidant production.

Another consequence of mitochondrial ROS release is
the enhancement of potassium transport across the inner

mitochondrial membrane due to the activity of ATP-
sensitive potassium channels (Zhang et al. 2001; Facundo
et al. 2007). The result of this transport is mild mitochon-
drial uncoupling and prevention of ROS formation (Ferranti
et al. 2003; Facundo et al. 2006; Facundo et al. 2007;
Fornazari et al. 2008). Alberici et al. (2006) demonstrated
that these channels present increased activity in hyper-
triglyceridemic mice, suggesting that they may participate
in energy metabolism and redox regulation in metabolic
disorders (Alberici et al. 2009). As a result, we also verified
if NASH promoted by a high-fat diet could alter mitochon-
drial K+ transport.

Materials and methods

Animals

Swiss mice were obtained from the Biotério do Conjunto
das Químicas (Universidade de São Paulo), an internation-
ally accredited animal facility. All studies were conducted
in accordance with guidelines established by the NIH Guide
for the Care and Use of Laboratory Animals and the
Colégio Braslieiro de Experimentação Animal and were
approved by the institutional Comissão de Ética em
Cuidados e Uso Animal. Mice had access to standard
laboratory rodent chow (Rhoster, Brazil) and water ad
libitum and were housed at 22 °C on a 12-h light-dark
cycle. In the diet group, animals received commercial soy
oil supplementation (Liza®, Brazil, 30% v/v) plus 9 g/L
sodium stearoyl-lactilate (Purac®, Brazil), an emulsifier, in
the drinking water (modified from Warwick et al. 2000).
Animals were offered high fat diets starting at the 6th week
of life, and maintained on the diet for either 2 or 10 months.
The diet results in 55% fat consumption and induces
obesity without altering plasmatic lipid or glucose levels.
General metabolic parameters such as plasmatic glucose,
total cholesterol and triglycerides were measured using
commercial enzymatic colorimetric assays (Doles®, Brazil).

Isolation of mouse liver mitochondria

Mitochondria were isolated by conventional differential
centrifugation at 4 °C. A liver homogenate was prepared in
300 mM sucrose, 2 mM ethylene glycol-bis (aminoethyl
ether)-N,N,N′,N′ tetraacetic acid (EGTA), 10 mM HEPES
buffer (pH 7.2, KOH), and 1 g/L bovine serum albumin and
centrifuged at 800 g for 5 min. The supernatant was
recentrifuged at 12,000 g for 10 min. This cycle was repeated
to remove contaminant blood. The pellet was washed in the
same medium. Protein quantification was measured using
Lowry’s method (Lowry et al. 1951) and bovine serum
albumin as the protein standard (modified from Castilho et
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al. 1995; Cancherini et al. 2003; Alberici et al. 2006).
Isolated mitochondria were kept over ice and used within
90 min of preparation to ensure mitoKATP activity. Mito-
chondria isolated in this manner lose matrix K+ and contract
due to low levels of this ion in the isolation buffer and
recover K+ when suspended in K+-rich buffers.

Mitochondrial swelling

Mitochondrial swelling was estimated from the decrease in
light scattering of the suspension measured at 520 nm in
suspensions incubated in experimental buffer (150 mM
KCl, 10 mM Hepes, 2 mM inorganic phosphate, 2 mM
MgCl2, adjusted to pH 7.4 with KOH), at 37 °C, with
continuous stirring, using a temperature-controlled Hitachi
4500 fluorimeter. Swelling rates of freshly isolated mito-

chondria were measured soon after their addition to K+-rich
buffers. Total mitoKATP activity was measured as the
difference in swelling under control conditions and experi-
ments in which mitoKATP was inhibited by ATP (Beavis et
al. 1993; Kowaltowski et al. 2001; Facundo et al. 2007).
Protein quantification was performed as described in
(Lowry et al. 1951).

Oxygen consumption and ADP/O ratios

Oxygen consumption was measured in mitochondrial
suspensions incubated in experimental buffer (150 mM
KCl, 10 mM Hepes, 2 mM inorganic phosphate, 2 mM
MgCl2, adjusted to pH 7.4 with KOH), at 37 °C, with
continuous stirring, using a computer-interfaced Clark-type
oxygen electrode from Hansatech Instruments Ltd. (Alberici
et al. 2006; Tahara et al. 2009). ADP/O ratios were
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Fig. 1 Body mass, plasmatic cholesterol, triglyceride and glucose
levels in female mice subjected to 2 months of hyperlipidic diet,
versus control. a Body mass over time, n=10 animals per group, p<
0.05 from week 4. b Total plasmatic cholesterol, n=5 per group. c
Plasmatic triglycerides, n=5 per group. d Plasmatic glucose, n=9
animals per group. e Typical macroscopic aspect of the livers from
control (left) and high-fat diet (right) animals
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Fig. 2 Hyperlipidic diets do not change oxygen consumption and
membrane potentials in liver mitochondria. a Mitochondria were
incubated in buffer containing 150 mM KCl, 10 mM Hepes, 2 mM
KH2PO4, 2 mM MgCl2, 2 mM succinate with 1 µg/mL oligomycin for
state 4 or 1 mM ADP for state 3 measurements, pH 7.4, at 37 °C with
magnetic stirring, n=4 per group, p>0.05. b Mitochondria were
energized with 2 mM malate/glutamate (I); 2 mM succinate with
0.8 µM rotenone (II); 0.8 µM rotenone, 0.15 ng/ml antimycin A and
2 mM TMPD/ascorbate (IV), n=4, p>0.05. c For ADP/O ratio
measurements 50 nmoles ADP were added to the suspension, n=4, p>
0.05. d Mitochondrial membrane potentials were measured fluori-
metrically in the same buffer as (a), with 1 µg/mL oligomycin, n=5,
p>0.05
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calculated by measuring the oxygen consumption (in
nmoles) needed to phosphorylate a known concentration of
added ADP (50 µmoles). Protein quantification was
performed as described in (Lowry et al. 1951).

Mitochondrial H2O2 release

H2O2 release was measured in mitochondrial suspensions
incubated in experimental buffer (150 mM KCl, 10 mM
Hepes, 2 mM inorganic phosphate, 2 mM MgCl2, adjusted
to pH 7.4 with KOH), at 37 °C, with continuous stirring.
Amplex Red (5 μM) oxidation was followed in the
presence of 1 U/mL horseradish peroxidase, using malate/
glutamate, succinate, (1 mM of each), or palmitoyl carnitine
(50 μM) as substrates. In most experiments (excluding
those conducted in State 3 promoted by the addition of
1 mM ADP), 1 μg/mL oligomycin was present. Amplex
Red is oxidized in the presence of extramitochondrial
horseradish peroxidase bound to H2O2, generating resor-
ufin, which can be detected fluorimetrically at 563 nm
excitation and 587 nm emission (Zhou et al. 1997; Chen et
al. 2003; Muller et al. 2004; Facundo et al. 2007; Tahara et
al. 2009). Controls conducted in the absence of mitochondria
or in the absence of peroxidase indicate that nonspecific probe

oxidation is negligible. Protein quantification was performed
as described in Lowry et al. (1951).

Inner mitochondrial membrane potentials

Mitochondrial inner membrane potential (ΔΨ) measure-
ments were conducted in experimental buffer (150 mM
KCl, 10 mM Hepes, 2 mM inorganic phosphate, 2 mM
MgCl2, adjusted to pH 7.4, with KOH), at 37 °C, with
continuous stirring. ΔΨ was estimated through fluores-
cence changes of 5 μM safranin O at excitation and
emission wavelengths of 485 and 586 nm, respectively.
Data obtained were calibrated using a K+ gradient. The ΔΨ
value obtained for each K+ concentration was determined
using the Nernst equation, assuming intramitochondrial K+

to be 150 mM, and plotted against measured fluorescence
values to generate a calibration curve for each experiment.
It should be noted that errors in the estimated concen-
trations of intramitochondrial K+ do not substantially alter
calculated ΔΨ values (Akerman and Wikström 1976;
Kowaltowski et al. 2002). Maximal Ca2+ accumulation was
calculated (as µmoles/mg protein) by following the effect of
Ca2+ additions on ΔΨ (Ichas et al. 1997). Protein quantifi-
cation was performed as described in Lowry et al. (1951).
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Fig. 3 MitoKATP activity is in-
creased in animals subjected to
hyperlipidic diets and correlates
with cholesterol levels. Mito-
chondria were incubated in
buffer containing 150 mM KCl,
10 mM Hepes, 2 mM KH2PO4,
2 mM MgCl2, 2 mM succinate
and 1 µg/mL oligomycin at
37 °C, pH 7.4, with magnetic
stirring. a Mitochondrial swell-
ing was measured under
different conditions to calculate
mitoKATP activity; without
channel modulators in K; 1 mM
ATP (ATP); ATP plus 30 µM
diazoxide (DZX); ATP plus
DZX plus 60 µM 5-
hydroxydecanoate (5-HD), n=5
experiments per group, *,
p<0.05 in relation to K of each
group, #, p<0.05 in relation to
ATP of diet group. b K+ salts
were substituted with Na+,
n=10, **, p<0.01. The dotted
line represents swelling rates in
the absence of ATP. c–e Corre-
lations between mitoKATP

activity and plasmatic lipids or
body mass; in (c) p<0.05,
R2=0.5794
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Data analysis

Data are representative or averages ± SEM of at least 3
repetitions using different preparations. Statistical analysis
was performed using one-way analysis of variance compar-
isons and analysis of variance (for more than two variables)
and Student t-tests (for two variables) conducted using
Origin 7.0 software (OriginLab) and Prism 5 (GraphPad).
p<0.05 was considered significant.

Results

Our aim in this study was to characterize mitochondrial
bioenergetic changes found in steatosis promoted by a high fat
diet. The diet adopted consisted in supplementation with soy
oil, and induced body mass increases (Fig. 1a), which were
significant from the 4th week of treatment on. No alterations
in general metabolic parameters such as plasmatic glucose,
total cholesterol and triglycerides were observed (Fig. 1b–d),
although significant steatosis developed (Fig. 1e). Hence, our
model represents a condition of diet-induced obesity with
steatosis, but not associated with dyslipidemia.

We next investigated aspects of liver mitochondrial phys-
iology in the animals treated for 2 months with this diet versus
controls (Fig. 2). No differences were noted in respiratory

control ratios (RCR), calculated as the ratio between oxygen
consumption in state 3 (in the presence of 1 mM ADP) and
state 4 (in the presence of oligomycin to inhibit oxidative
phosphorylation, Fig. 2a). ADP/O ratios were calculated to
determine the coupling between the respiratory chain and
ATP-synthase and show no differences between groups
(Fig. 2b). Maximum oxygen consumption promoted by
substrates of the different respiratory complexes also showed
similar values for diet and control groups (Fig. 2c). Finally,
ΔΨ, estimated by following safranin O fluorescence, was
equal between groups as well (Fig. 2d). Overall, these results
indicate that no significant changes in mitochondrial bioen-
ergetic function accompany diet-induced steatosis.

We investigated next if the diet changes the mitochon-
drial ability to accumulate Ca2+ ions. 1 nmol additions of
CaCl2 were made sequentially to the suspension, and ΔΨ
was followed (results not shown). A decrease in ΔΨ
promoted by Ca2+ was observed in both groups, and could
be attributed to the mitochondrial permeability transition,
since it was prevented by cyclosporin A (Lemasters et al.
1998). No differences were observed between the experi-
mental groups. Hence, our results indicate that obesity and
steatosis do not change mitochondrial ability to accumulate
Ca2+ or trigger the permeability transition.

We evaluated next if K+ transport through mitoKATP

channels was altered in diet-induced obesity and steatosis
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Fig. 4 Mitochondrial hydrogen
peroxide generation is increased
by high fat diets, Mitochondria
were incubated in buffer con-
taining 150 mM KCl, 10 mM
Hepes, 2 mM KH2PO4, 2 mM
MgCl2, and, where indicated,
1 mM ADP, 1 µg/ml oligomy-
cin, 0.8 µM rotenone, 0.150 ng
antimycin A, 0.250 ng myxo-
thiazol at 37 °C, pH 7.4, with
magnetic stirring. a 2 mM ma-
late plus glutamate were used as
substrates. b 0.1 mM palmitoyl-
carnitine was used. c 2 mM
succinate was employed, n=9
experiments per group in all
panels. Symbols represent
p<0.01 in relation to control
groups
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(see Fig. 3). Alberici et al. (2006) demonstrated that
transgenic dyslipidemic mice present enhanced channel
activity, and hypothesized this may be a compensatory
mechanism to promote the oxidation of excess lipids
(Vercesi et al. 2007). Channel activity was measured using
the swelling assay (Beavis et al. 1993; Kowaltowski et al.
2001). We found (Fig. 3a) that mitochondrial swelling
inhibition by ATP and the sensitivity to diazoxide (a
channel activator) was greater in the diet group, suggesting
that mitoKATP activity was higher. Controls using sodium
salts instead potassium demonstrate that these effects are
specific for K+ transport (Fig. 3b). We then evaluated if the
activity of the channel (measured by the difference between
the opened state, without ATP, and closed state, with ATP)
correlated with the animal’s metabolic parameters and body
mass. MitoKATP activity correlated significantly with
cholesterol levels (Fig. 3c), but not body mass or
triglyceride levels (Fig. 3d and e).

Since mitoKATP regulates mitochondrial ROS release in
cardiac, cerebral and liver tissues (Alberici et al. 2009;
Facundo et al. 2006; Facundo et al. 2007; Ferranti et al.
2003; Fornazari et al. 2008), we asked if ROS release under
our conditions was modulated by channel activity. We
observed that the activation of mitoKATP did not alter H2O2

release, respiratory rates or ΔΨ in state 4 mitochondria
(results not shown). However, the generation of H2O2 was
larger in the diet group, using different respiratory
substrates (Fig. 4). To evaluate possible sites of ROS
overproduction, we used different respiratory inhibitors
(Fig. 4, see Tahara et al. 2009). Myxothiazol and Antimycin
A were used to inhibit different sites within complex III.
Rotenone was employed to inhibit complex I and prevent
reverse electron transport in mitochondria energized by
succinate. No differences were found between groups using
inhibitors. Indeed, we found that palmitoyl-carnitine was
the substrate that generated most ROS, suggesting that lipid
oxidative metabolism in liver mitochondria is an important
source of oxidants (Fig. 4b) (Tahara et al. 2009). The
generation of H2O2 was not strongly altered by different
respiratory states or respiratory inhibitors, as observed
previously for rat liver mitochondria (Tahara et al. 2009).

Since 2 months on a high-fat diet lead to changes in
mitochondrial K+ transport rates and ROS release, but does
not compromise oxidative phosphorylation, we asked next
if the continuous use of this diet could compromise
mitochondrial function. We treated animals for a 10 months
and observed a dramatic increase in body mass (Fig. 5a),
although plasmatic glucose (5b), cholesterol (5c) and
triglycerides (5d) remained unaltered.

ADP/O ratios were measured and showed a decrease in
the diet-treated animals (Fig. 6a). ΔΨ and RCRs were
unchanged (Fig. 6b and c). MitoKATP activity (Fig. 7a) was
no longer enhanced after this prolonged exposure to the

high-fat diet and O2 consumption remind unaltered
(Fig. 7b). Finally, we measured H2O2 generation, supported
by succinate, and noted it was strongly enhanced in the
high-fat diet group (Fig. 7c).

Discussion

This manuscript examines the effects of dietary-induced
steatosis on mitochondrial bioenergetics, ion transport and
oxidant generation. Dietary-induced models of metabolic
disease are of interest since many studies focus exclusively
on genetic models, in which metabolic alterations are very
large and dissimilar to those frequently observed in humans
(Anstee and Goldin 2006). Swiss mice, commonly used in
investigations pertaining to the metabolic syndrome due to
their tendency to develop obesity (Plum et al. 2002; Gault
et al. 2007; Romanatto et al. 2009), were maintained on a
soy oil-supplemented diet that promoted obesity and
steatosis (Fig. 1), but did not lead to hyperglycemia or
hypertriglyceridemia, often observed in diets rich in
saturated fatty acids (Grubb et al. 2004; Wang et al. 2006;
Kim et al. 2007; Tsukumo et al. 2007).
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Fig. 5 Body mass, plasmatic cholesterol, triglycerides and glucose in
female mice subjected to 10 months of hyperlipidic diet versus control. a
Body mass, n=6 animals per group, p<0.001. b Plasmatic glucose, n=6
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250 J Bioenerg Biomembr (2010) 42:245–253



Interestingly, although mitochondrial bioenergetic alter-
ations are widely shown to be associated (Mantena et al.
2009) and even causative (Simoneau et al. 1999; Kelley et
al. 2002; Caraceni et al. 2004) of metabolic diseases, we
found no overt changes in mitochondrial bioenergetics in
the livers of the obese, steatotic, animals offered the diet for
2 months (Fig. 2). After long-term exposure to the diet
(Fig. 6), respiration supported by complex IV substrate
TMPD tends toward lower values, as well as ADP/O ratios.
Obviously, these bioenergetic effects, in addition to being
quite discreet, are not causative of the steatotic phenotype,
observed even after short-term dietary intervention.

On the other hand, mitochondria isolated from the high-
fat diet animals consistently presented increased ROS
release rates, both after 2 and 10 months on the diet (Figs. 4
and 7). This is consistent with other studies involving

obesity and steatosis, which uncovered increased levels of
ROS biomarkers in the liver (Sanyal et al. 2001; Seki et al.
2002; Alberici et al. 2009; Mantena et al. 2009). Since
maximal respiratory rates in the presence of different
substrates (Fig. 3) were equal in control and steatotic
groups, the difference in ROS formation is probably not
related to partial respiratory inhibition observed in some
metabolic disease models (Mantena et al. 2009; Nakamura
et al. 2009), although a non-rate-limiting inhibition cannot
be excluded. Increased ROS release may be related, at least
in part, to enhanced electron leakage during β-oxidation,
since it is magnified when fatty acids are used as substrates
(Fig. 4).

Because these changes in ROS release are observed in
the initial phases of steatosis, they could be causative of the
illness and may act as signaling molecules changing the
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Fig. 6 Hyperlipidic diet effects on mitochondria after 10 months.
Mitochondria were incubated in buffer containing 150 mM KCl,
10 mM Hepes, 2 mM KH2PO4, 2 mM MgCl2, 2 mM succinate, pH
7.4, at 37 °C, with magnetic stirring; a For ADP/O ratio measure-
ments, 50 nmoles ADP were added to the suspension, n=4, p>0.05. b

Mitochondrial membrane potentials were measured fluorimetrically in
the same buffer as (a) with 1 µg/ml oligomycin, n=5, p>0.05. c 1 µg/
ml oligomycin for state 4 or 1 mM ADP for state 3 measurements
were present as indicated, n=5 per group, p>0.05
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Fig. 7 MitoKATP activity, O2 consumption and H2O2 release after
10 months of hyperlipidic diet. Mitochondria were incubated in buffer
containing 150 mM KCl, 10 mM Hepes, 2 mM KH2PO4, 2 mM
MgCl2, 2 mM succinate and 1 µg/ml oligomycin at 37 °C, pH 7.4,
with magnetic stirring. a Mitochondrial swelling was measured under
different conditions to calculate mitoKATP activity. Without channel

modulators in K; 1 mM ATP (ATP); ATP plus 30 µM diazoxide
(DZX); ATP plus DZX plus 60 µM 5-hydroxydecanoate (5-HD), n=5
experiments per group, p>0.05. b Mitochondria were incubated in the
same medium as (a), and respiratory activity was measured, n=4, p>
0.05. c Mitochondria were incubated in the same media as (a), with
added Amplex Red/HRP as described in Fig. 4
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expression and activity of mitochondrial proteins (Ip et al.
2003; Furukawa et al. 2004; Tattoli et al. 2008). UCP2 and
mitoKATP are activated by ROS (Zhang et al. 2001; Echtay
et al. 2002; Jezek and Hlavatá 2005; Facundo et al. 2006;
Facundo et al. 2007; Fornazari et al. 2008) and modulate
ROS generation by promoting mild uncoupling (Jezek et al.
2004; Facundo et al. 2007; Fornazari et al. 2008). We
investigated if our high-fat diet induced mild uncoupling
pathways, focusing mainly on mitoKATP.

We observed increased activity of a K+-selective, ATP
sensitive transport pathway in mitochondria isolated from
animals on the high-fat diet, suggesting enhanced mitoKATP

activity. Since K+ transport was measured indirectly
through mitochondrial swelling, it could be argued that
the changes were not related to K+ transport activity.
However, we found no changes in H+ or Na+ transport,
respiratory rates and ΔΨ between the groups, indicating
that these changes are, indeed, related to mitoKATP activity.

The increased channel activity promoted by a high-fat
diet suggests that mitoKATP may have an important role
regulating energy metabolism in the liver. This is further
supported by the strict correlation found between mitoKATP

activity and cholesterol levels (Fig. 3). Although we do not
know why this correlation occurred, it is possible it may
relate to changes in redox state, since cholesterol synthesis
requires large amounts of NADPH (Vercesi et al. 2007).
The channel activity is also determined by the balance
between levels of intracellular inhibitors (such as adenine
nucleotides and acyl-CoA groups) and activators (guano-
sine nucleotides) (Paucek et al. 1996) and phosphorylation,
at least in cardiac and brain tissues (Hassouna et al. 2004;
Raval et al. 2007). It is possible these are also altered by
diet. In experiments with rats, Samuel et al. demonstrated
that PKC epsilon is overactivated by a high-fat diet (Samuel
et al. 2004), which could alter mitoKATP activity (Hassouna
et al. 2004; Raval et al. 2007).

Alberici et al. (2006) found that transgenic animals that
over-expressed ApoCIII and present high levels of trygli-
cerides (∼500 mg/dL) show increases in liver mitochondrial
mitoKATP activity and hypothesized that mild uncoupling
promoted by channel activity may be an adaptation to
oxidize the excess lipid and attenuate ROS production.
Indeed, they demonstrated that mitoKATP could down-
regulate ROS generation in transgenic mice (Alberici et
al. 2009). Interestingly, while mitoKATP was important to
regulate mitochondrial redox state in genetically-induced
trygliceridemia (Alberici et al. 2009), in our model, ROS
release from mitochondria was not significantly altered by
the activity of this channel (data not shown). This may be
due to the poor response of liver mitochondrial ROS release
to uncoupling (Tahara et al. 2009).

Overall, we find that diet-induced steatosis is not
accompanied by overt changes in mitochondrial bioener-

getics, but involves significant changes in K+ transport and
ROS generation. The finding that mitoKATP channels in the
liver are activated by diet provides evidence that these
channels may play an important role in the regulation of
energy metabolism. This could be an intriguing new
function for these channels, which to date have mostly
been associated with tissue protection against ischemic
damage (Facundo et al. 2007; Costa and Garlid 2008).
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